Sobre la geometría de los divisores de cero del álgebra de sedeniones

Silvio Reggiani

Universidad Nacional de Rosario, Argentina reggiani@fceia.unr.edu.ar

El álgebra de sedeniones $\mathbb S$ puede obtenerse a partir del álgebra de octoniones $\mathbb O$ vía la construcción de Cayley-Dickson, es decir, los elementos de $\mathbb S$ son pares $(a,b)\in \mathbb O\times \mathbb O$ con la multiplicación y la conjugación definidas por

$$(a,b)(c,d) = (ac - d^*b, da + bc^*),$$
 $(a,b)^* = (a^*, -b)$

respectivamente, en donde $a\mapsto a^*$ es la conjugación usual en $\mathbb O$. Resulta así que $\mathbb S$ es un álgebra no-asociativa de dimensión real 16. A diferencia de los octoniones, $\mathbb S$ no es un álgebra de división: tiene divisores de cero. La topología de los divisores de cero en $\mathbb S$ está determinada por un fibrado principal

$$SU(2) \longrightarrow G_2 \longrightarrow V_2(\mathbb{R}^7)$$

sobre la variedad de Stiefel $V_2(\mathbb{R}^7)$. En este trabajo estudiamos la geometría de los divisores de cero en \mathbb{S} , la cual viene dada como la geometría de subvariedad de dos inclusiones naturales

$$G_2 \hookrightarrow S^{13} \times S^{13}, \qquad V_2(\mathbb{R}^7) \hookrightarrow S^{13}$$

que se corresponden con ciertas métricas G_2 -invariantes en G_2 y $V_2(\mathbb{R}^7)$.