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Graphs with a unique perfect matching have been extensively studied in the literature, see [1] and [2].
A graph G is unimodular if |det(G)| = 1. In [3], the problem of characterizing unimodular graphs is
proposed, and unicyclic unimodular graphs are characterized. A Kőnig-Egerváry graph is a graph such
that its vertex covering number equals its matching number. Kőnig-Egerváry graphs were independently
introduced in 1979 by Deming [4] and Sterboul [5]. An even subdivision of a graph G is either the graph
G itself or any of the graphs that arise from G by successive application of even subdivisions. A barbell
is the graph formed by two disjoint K 3 linked by an edge. We also refer as a barbell graph to any even
subdivision of it. In [6], the notion of a barbell part, B(G), of a graph G with a unique perfect matching
was introduced. It was shown that every such graph G can be decomposed into two disjoint subgraphs:
KE(G) (a Kőnig-Egerváry graph) and B(G) (the subgraph induced by all vertices in M -barbells of G).
A graph G is called a B-graph if B(G) = G.

In [6], it was proved that for all graphs with a unique perfect matching:

det(G) = det(B(G)) · det(KE(G)).

Hence, in order to characterize when a graph is unimodular, it is necessary to characterize when Kőnig-
Egerváry graphs and B-graphs are unimodular. This work characterizes a large unimodular subfamily of
B-graphs.

Trabajo en conjunto con Daniel A Jaume (Universidad Nacional de San Luis) y Diego G Martinez (Uni-
versidad Nacional de San Luis).
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