Comunicaciones

Resumen

Sesión Análisis

New integral inequalities of the Hermite-Hadamard type for functions $(h, m)$-convex twice differentiable

Juan Eduardo Nápoles Valdés

UNNE-FaCENA, UTN-FRRE, Argentina   -   Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Convex functions have been generalized widely; highlighting the m-convex function, r-convex function, h-convex function, (h, m)-convex function, s-convex function and many others. Readers interested in going through many of these extensions and generalizations of the classical notion of convexity can consult [1].

For convex functions, the following inequality is known, undoubtedly one of the most famous in Mathematics, for its multiple connections and applications:

\[ \phi \left( \frac { a+b }{ 2 } \right) \leq \frac { 1 }{ b-a } \int _{{ a }}^{{ b }}\quad \phi (x)\, dx\leq \frac { \phi (a)+\phi (b) }{ 2 }, \]

this is called the Hermite–Hadamard inequality.

This inequality was published by Hermite in 1883 ( [2]) and independently by Hadamard in 1893 ( [3]). In the last 30 years especially, many researchers have focused their attention on this inequality and many results have appeared.

In [4] we presented the following definitions.

Let $h:[0,1]\rightarrow \mathbb{R}$ be a nonnegative function, $h\neq 0$ and $\psi :I=[0,+\infty )\rightarrow \lbrack 0,+\infty )$. If inequality \[ \psi \left( \tau \xi +m(1-\tau )\varsigma \right) \leq h^{s}(\tau )\psi (\xi)+m(1-h^{s}(\tau ))\psi \left(\varsigma\right) \label{e:hmc1} \] is fulfilled for all $\xi ,\varsigma \in I$ and $\tau \in [0,1]$, where $m\in [0,1]$, $s\in [-1,1]$. Then a function $\psi $ is called a $(h,m)$-convex modified of the first type on $I$.

Let $h:[0,1]\rightarrow \mathbb{R}$ nonnegative functions, $ h\neq 0$ and $\psi :I=[0,+\infty )\rightarrow \lbrack 0,+\infty )$. If inequality \[ \psi \left( \tau \xi +m(1-\tau )\varsigma \right) \leq h^{s}(\tau )\psi (\xi)+m(1-h(\tau ))^{s}\psi\left(\varsigma\right) \label{e:hmc11} \] is fulfilled for all $\xi ,\varsigma \in I$ and $\tau \in [0,1]$, where $m\in [0,1]$, $s\in [-1,1]$. Then a function $\psi $ is called a $(h,m)$-convex modified of the second type on $I$.

Remark. The reader can verify, without much difficulty, that various functional classes are particular cases of these definitions, for the appropriate choice of $h,m,s$.

Next we present the weighted integral operators, which will be the basis of our work.

Let $\phi \in L\left( [a,b]\right) $ and let $w $ be a continuous and positive function, $w :[0,1]\rightarrow [0,+\infty )$, with second order derivatives integrable on $I$. Then the weighted fractional integrals are defined by (right and left respectively):

\[ J_{a^{+}}^{w }\phi (r)=\int_{a}^{b}w''\left(\frac{\sigma -a}{b-a}\right) \phi (\sigma)d\sigma \]

and

\[ J_{b^{-}}^{w }\phi (r)=\int_{a}^{b}w''\left(\frac{b-\sigma }{b-a}\right) \phi (\sigma)d\sigma. \]

In this work, we obtain different variants of the Hermite-Hadamard inequality, in the framework of the $(h,m)$-convex modified functions, via generalized operators of the Definitions presented before.

Referencias

[1] J. E. Nápoles Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne's thread or Charlotte's spiderweb?, Advanced Mathematical Models & Applications Vol.5, No.2, 2020, pp.176-191.

[2] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis 3, 82 (1883).

[3] J. Hadamard, Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considerée par Riemann, J. Math. Pures Appl. 58, 171-215 (1893).

[4] B. Bayraktar, J. E. Nápoles V., A note on Hermite-Hadamard integral inequality for $(h,m)-$convex modified functions in a generalized framework, submited.

[5] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci. 7, 89-94 (2012).

[6] A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for $(k,h)$-Riemann–Liouville fractional integral, New Trends Math. Sci. 4(1), 138–146 (2016).

[7] F. Jarad, T. Abdeljawad, T. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, Vol. 28, No. 8 (2020) 2040011 (12 pages) DOI: 10.1142/S0218348X20400113

[8] M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Annals of the University of Craiova, Mathematics and Computer Science Series Volume 47(1), 2020, Pages 193-213

[9] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ. 2017, 2017, 247.

[10] T. U. Khan, M. A. Khan, Generalized conformable fractional integral operators, J. Comput. Appl. Math. 2019, 346, 378-389.

Ver resumen en PDF