Comunicaciones

Resumen

Sesión Lógica y Computabilidad

Dualidad topológica para semiretículos con adjunciones

Belén Giménez

Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina   -   Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.

Un semiretículo con adjunción es una estructura $ (A, l, r)$ donde $A = ⟨A, ∧, 1⟩$ es un semiretículo acotado, con l y r operadores unarios sobre A que verifican: \[(Adj) \ l(x) ≤ y \longleftrightarrow x ≤ r(y)\] El objetivo principal de este trabajo es desarrollar una dualidad entre la categoría de semiretículos con adjunciones y una categoría de ciertos espacios topológicos multirelacionales con determinados morfismos. Para llevar a cabo esta dualidad, empleamos la dualidad para semiretículos monótonos desarrollada por Calomino, Menchón y Zuluaga en [1], así como ciertos resultados establecidos en [2].

Trabajo en conjunto con: Gustavo Pelaitay (CONICET -UNSJ) y William Zuluaga (CONICET-UNICEN).

Referencias

[1] Calomino, I., Menchón, P. y Botero, W.J.Z. A Topological Duality for Monotone Expansions of Semilattices. Appl Categor Struct 30, 1257–1282 (2022).

[2] Celani, S.A., González, L.J. A Categorical Duality for Semilattices and Lattices. Appl Categor Struct 28, 853–875 (2020).

Ver resumen en PDF